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Summary

Whole genome sequencing and SNP genotyping arrays can paint strikingly different pictures of 

demographic history and natural selection. This is because genotyping arrays contain biased sets 

of pre-ascertained SNPs. In this short review, we use comparisons between high-coverage whole 

genome sequences of African hunter-gatherers and data from genotyping arrays to highlight how 

SNP ascertainment bias distorts population genetic inferences. Sample sizes and the populations in 

which SNPs are discovered affect the characteristics of observed variants. We find that SNPs on 

genotyping arrays tend to be older and present in multiple populations. In addition, genotyping 

arrays cause allele frequency distributions to be shifted towards intermediate frequency alleles, 

and estimates of linkage disequilibrium are modified. Since population genetic analyses depend on 

allele frequencies it is imperative that researchers are aware of the effects of SNP ascertainment 

bias. With this in mind we describe multiple ways to correct for SNP ascertainment bias.
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African hunter-gatherers and the power of whole genome sequencing

Due to technological advances and increases in computational power the cost of genotyping 

has plummeted over the past few years. Because of this, it is now feasible to conduct 

population genetic analyses of whole genome sequencing data. One advantage of whole 

genome sequencing is that SNP ascertainment bias is reduced compared to alternative 

genotyping technologies. This lack of SNP ascertainment bias is critical for accurate 

population genetic analyses where allele frequency distributions are used to infer 

demographic history and scan for past targets of natural selection. Using the technology of 

Complete Genomics [1], we recently sequenced the whole genomes of 15 African hunter-

gatherers at >60x coverage [2]. Sequenced individuals included five Pygmies from 

Cameroon, five Hadza from Tanzania, and five Sandawe from Tanzania. The genomes of 

these diverse African hunter-gathers contain millions of previously unknown variants [2]. 

Because these variants were largely free of ascertainment bias found on genotyping arrays, 
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by using whole genome sequencing we were able to make much more accurate inferences of 

demographic history, ancient admixture, and local adaptation.

By comparing whole genome sequence data of African hunter-gatherers to SNP variation 

observed using an Illumna-1M Duo BeadChip array, we highlight how SNP ascertainment 

bias can have a major impact on population genetic analyses. The Illumina-1M Duo array 

contains approximately 1.2 million markers, the majority of which are tag SNPs for use in 

genome-wide association studies. This array is enriched for SNPs in the MHC region of 

chromosome 6 and for coding SNPs that were discovered by the 1000 genomes project. We 

chose the Illumina-1M Duo array for comparisons with whole genome sequence data 

because it is representative of a genotyping technology that uses a genome-wide set of pre-

ascertained SNPs. An additional set of SNP genotyping arrays are made by Affymetrix. 

Population genetic analysis of Human Genome Diversity Panel (HGDP) data using Illumina 

650K and Affymetrix 500K SNP arrays gave largely similar results for both genotyping 

platforms [3]. However, heterozygosity estimates were smaller for the Affymetrix 500k 

array than the Illumina 650K array [3]. Other more specialized genotyping arrays, such as 

the Metabochip [4], are expected to present additional challenges with respect to 

ascertainment bias.

SNP ascertainment bias arises from many sources

SNP ascertainment bias is the systematic deviation of population genetic statistics from 

theoretical expectations, and it can be caused by sampling a nonrandom set of individuals or 

by biased SNP discovery protocols. Unless the whole genome of every individual in a 

population is sequenced there will always be some form of SNP ascertainment bias. This is 

because a small sample size is more likely to “catch” common alleles than rare alleles [5]. 

An additional issue is that ascertainment schemes are not always explicitly known and SNPs 

on genotyping arrays are often ascertained in a non-uniform manner. For example, a 

disproportionate number of SNPs have been identified by sequencing European individuals 

[6]. Previous comparisons between HapMap and Perlegen datasets indicate that population 

genetic analyses based on ascertained SNP data yield inaccurate results [7]. This is because 

classical models of theoretical population genetics do not explicitly take into account SNP 

ascertainment bias [8]. By contrast, the problem of ascertainment bias is less of an issue for 

individual identification, paternity analyses, and assigning individuals to different 

populations [9,10].

Because genetic diversity is unequally distributed across populations, the populations in 

which SNPs are discovered contribute to SNP ascertainment bias. For example, human 

populations from Africa contain greater genetic diversity than populations from Europe, 

Asia, Oceania, or the Americas. This pattern arises from serial bottlenecks and founder 

effects as modern humans expanded from Africa to colonize other continents. Even among 

African populations the number of SNPs detected can vary substantially: we observed a total 

of 8.9 million variants in five Pygmy genomes, 7.3 million variants in five Hadza genomes, 

and 8.2 million variants in five Sandawe genomes [2]. When SNPs are ascertained in one 

population and used to genotype other populations erroneous conclusions can result [11]. 

This is particularly important for SNPs originally discovered in less diverse (non-African) 
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populations. For example, when the heterozygosity of variants ascertained in European 

populations are assessed it can falsely lead to the conclusion that European populations 

harbor a greater amount of variation than African populations [12] and to mis-estimates of 

effective population sizes [13].

An additional form of bias is that genotyping arrays are enriched for SNPs in some genomic 

regions and deficient for SNPs in other genomic regions. For each African hunter-gatherer 

population, we compared the number of SNPs per 100kb window from whole genome 

sequencing and the number of SNPs present on the Illumna-1M Duo genotyping array (Fig. 

1). As expected, SNP density was much higher for whole genome sequencing. Overall, 

genomic regions with high numbers of SNPs from whole genome sequencing also had a 

high number of SNPs on the Illumina-1M Duo array (Pearson's r : 0.62457 for Pygmies, 

0.62404 for Hadza, 0.63124 and for Sandawe). However, not all 100kb windows are 

represented equally on the Illumina-1M Duo array (Fig. 1), and a moderately high 

correlation between the number of variants per windows does not mean that the population 

genetic properties of SNPs are the same for SNPs assayed using different genotyping 

platforms.

Compared to SNPs, ascertainment bias is stronger for indels and weaker for microsatellites 

[14]. The high amount of bias for indels may be due to ascertainment schemes that are 

enriched for large allele frequency differences between European and African populations 

[14]. Microsatellites are relatively buffered from ascertainment bias because these variants 

have high mutation rates and are more likely to be heterozygous (microsatellites tend to be 

polymorphic in multiple populations) [15]. However, even microsatellites are not entirely 

free from ascertainment bias [16].

Ascertained SNPs lead to a biased view of evolutionary history

Small sample sizes bias allele frequency distributions towards common SNPs. This occurs 

even if data arise from whole genome sequencing. The probability that an autosomal variant 

with an allele frequency of p is polymorphic in a sample of n diploid genomes is given by: 

P(polymorphic| n, p) = 1 − p2n − (1 − p)2n [17]. This expression indicates that 

polymorphisms are more likely to be detected if allele frequencies are intermediate (p = 0.5) 

and sample sizes are large (Fig. 2A). Under the neutral theory of evolution the probability 

density of alleles is inversely proportional to the derived allele frequency [18], meaning that 

the majority of polymorphic sites contain low frequency derived alleles. The theoretical 

probability density of neutral derived alleles can be weighted by the probability of detecting 

a polymorphism in a small sample (Fig. 2B). Here, we see that smaller sample sizes result in 

derived allele frequency distributions with fewer rare alleles (Fig. 2B).

Pre-ascertained SNPs found on genotyping arrays result in skewed allele frequency 

distributions. SNPs identified from whole genome sequencing tend to be uncommon (Fig. 

3A–C). By contrast, SNPs on the lllumina-1M Duo array are biased toward intermediate 

frequency alleles that are found in multiple populations (Fig. 3D–F). This rightward shift in 

allele frequency distributions towards intermediate frequency alleles has also been observed 

in comparisons between ascertained HapMap SNPs and Perlegen data from low-coverage 
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whole genome sequencing [7]. Modern computational methods use joint allele frequency 

distributions from multiple populations to infer divergence times, ancestral population sizes, 

and migration rates [19,20]. Because genotyping arrays modify allele frequency 

distributions (Fig. 3) demographic inference from ascertained SNPs will yield flawed results 

(including misestimated divergence times, effective population sizes, and migration rates 

[21]). Additionally, the mean derived allele frequency (DAF) is greater for ascertained SNPs 

than SNPs identified from whole genome sequencing of African hunter-gatherers (Fig. 4A). 

Because population bottlenecks also result in increased derived allele frequencies, SNP 

ascertainment bias can make it appear that populations have shrunk in size [11,22]. Also, the 

relative increase of derived allele frequency due to SNP ascertainment bias varies by 

population (32% for Pygmies, 41% for Hadza, and 27% for Sandawe).

Compared to variants observed from whole genome sequencing, pre-ascertained SNPs are 

biased toward older SNPs. Using derived allele frequency distributions and an equation that 

connects allele frequency to SNP age (Equation 4 in [23]), we estimated the ages of SNPs 

found via whole genome sequencing vs. the ages of SNPs on the Illumina-1M Duo array. 

Ascertained SNPs were 13–18% older than SNPs from whole genome sequencing of 

African hunter-gatherers (Fig. 4B). Older SNPs are less likely to be population-specific, and 

this can cause fine-scale patterns of diversity to be missed. However, analyzing large 

numbers of SNPs can overcome some of these difficulties [24,25].

Measures of population differentiation, such as FST, are also affected by SNP ascertainment 

bias. Older SNPs, such as ascertained SNPs found on genotyping arrays, can drift to very 

different allele frequencies in divergent populations. Furthermore, the magnitude of FST 

depends upon minor allele frequencies in each population [26]. Comparisons between whole 

genome sequences and SNP array data for African hunter-gatherers reveals that ascertained 

SNPs tend to have higher values of FST (Fig. 4C). This means that ascertained SNPs will 

tend to overestimate the amount of population differentiation. Interestingly, STRUCTURE 

[27], which assigns individual ancestry to a finite number of population clusters, is relatively 

robust to SNP ascertainment bias [28]. This occurs because STRUCTURE uses large multi-

locus datasets and the most informative SNPs for ancestry inference are variants with large 

frequency differences across populations [29].

Ascertainment bias can also affect scans of selection. Signatures of natural selection include 

extended haplotype homozygosity [30,31], large locus-specific branch lengths [32], skewed 

allele frequency distributions [33], and high values of FST [34]. Demographic history shapes 

variation across the whole genome while the effects of selection tend to be locus-specific. 

Because of this, outlier loci are strong candidates for natural selection. However, outlier 

approaches can lead to many false positives and negatives [35,36], particularly when an 

ascertained subset of SNPs is analyzed. In our analysis of high-coverage whole genome 

sequences of African hunter-gatherers we identified many putative targets of natural 

selection [2]. The majority of these putative targets of selection were population-specific. 

Genotyping arrays with ascertained SNPs have also been used to detect signatures of natural 

selection in Pygmy, Hadza, and Sandawe populations [37,38]. However, with a few notable 

exceptions, there was minimal overlap between putatively selected genomic regions 

identified using different genotyping platforms. Some of this lack of overlap is due to 
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methodological differences across studies, but it illustrates that ascertainment bias can 

potentially affect which genomic regions are identified from scans of selection.

SNP ascertainment bias can also cause linkage disequilibrium (LD) to be misestimated. The 

ability of marker SNPs to tag genomic regions depends on the amount of LD, and because 

LD decays faster in African populations [39], greater SNP densities are required for 

association studies that use African samples. Although less bias is expected for multi-locus 

haplotype statistics than single-locus statistics [40], there is evidence from theoretical 

population genetics that ascertainment bias modifies LD decay curves (including elevated r2 

values and reduced |D'| values) [41]. LD decay curves from ascertained SNP data have been 

used to estimate the effective sizes of HapMap populations [42], divergence times and 

population size changes for 17 global populations [43], and demographic inference of 

Yoruba and French populations from the HGDP panel [44]. To directly assess the effects of 

ascertainment bias, we generated LD decay curves for Pygmy, Hadza, and Sandawe 

populations using data from whole genome sequencing and the Illumina1M-Duo SNP array 

(Fig. 5). Here, 10,000 randomly chosen pairs of linked SNPs were chosen for each 

population and genotyping platform, SNP pairs were binned into 1kb intervals, and mean r2 

values were calculated for each bin. Qualitatively similar patterns of LD were found for each 

platform: values of r2 were largest for the Hadza, intermediate for Sandawe, and smallest for 

Pygmy samples (Fig. 5). However, estimates of r2 were consistently larger for ascertained 

SNPs than SNPs obtained from whole genome sequence data (Fig. 5). This underscores the 

need to correct for SNP ascertainment bias when population genetic inferences are made 

from LD decay curves.

How can researchers cope with SNP ascertainment bias?

Ideally, whole genome sequencing would be used to avoid SNP ascertainment bias. 

However, because allele frequency distributions are shaped by small sample sizes one can 

never be completely free of SNP ascertainment bias. Furthermore, the cost of high-coverage 

whole genome sequencing ($3000–$5000 per human genome) is high enough that few labs 

will be able to afford large sample sizes. Low-coverage sequencing, such as that of the 1000 

genomes project [45], runs the risk of biasing allele frequency distributions because 

singletons are harder to call. As an alternative, exome sequencing [46] and other sequence 

capture approaches [47] can be used. Under these methods an affordable subset of the 

genome is sequenced using next-generation sequencing technologies. However, this can be 

problematic because coding regions of the genome have different population genetic 

properties than non-coding regions [2], and care must be taken to capture enough 

independent regions of the genome.

Barring the use of whole genome sequences, ascertainment bias can be reduced by using 

haplotype data. Partly because they are more likely to be polymorphic in multiple 

populations, haplotype statistics are less affected by ascertainment bias than single locus 

statistics [40,48,49]. However, use of haplotype statistics requires that phase information is 

known and accurate phase information requires large sample sizes and/or pedigree data.
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One way to correct for SNP ascertainment bias is to modify raw genotype data. Corrections 

can be made by modeling SNP discovery (including depth of coverage) and then 

incorporating this information into either a maximum likelihood [8,11] or Bayesian [50] 

framework to estimate allele frequency distributions and other demographic parameters. For 

example, Albrechtsen et al. used this approach to correct for ascertainment bias on the 

Affymetrix 500K SNP chip [51]. They used maximum likelihood and Celera sequence data 

to reverse-engineer ascertainment schemes and modify allele frequency distributions from 

the Affymetrix chip. However, because resequencing data are not always available it is not 

always possible to correct for ascertainment bias as per Albrechtsen et al. [51].

An alternative method is to explicitly incorporate SNP ascertainment bias into population 

genetics models. Here, empirical datasets can then be compared to modified expectations 

from theory. Using this approach Nielsen and Signorovitch demonstrated that modeling SNP 

ascertainment bias leads to more accurate estimates of linkage disequilibrium [41]. 

Similarly, by incorporating ascertainment bias into theoretical models Wakeley et al. were 

able to improve estimates of gene flow and population size changes [21]. Software packages 

like SIMCOAL2 are also able to simulate some forms of ascertainment bias through the use 

of a minimum allele frequency filter [52]. However, one limitation of explicitly 

incorporating bias into theoretical models is that it is not always possible to know the 

ascertainment scheme that was actually used. One way around this is to use SNPs 

ascertained in a single individual, such as SNPs found on the Human Origins Array [53], but 

this approach is most useful when it is restricted to the population of original ascertainment.

Conclusions and outlook

The value of population genetic data is maximized when researchers are aware of existing 

biases. Using whole genome sequence data from African hunter-gatherers we have 

illustrated how SNP ascertainment bias can distort inferences about demographic history and 

natural selection of populations. It is important that published studies describe any 

ascertainment schemes used to generate data. Because whole genome sequencing reduces 

the amount of ascertainment bias, we encourage researchers to use high-coverage 

sequencing data whenever it is feasible. Regardless of the genotyping platform used, it is 

important to correct for ascertainment bias (either by modifying raw data or incorporating 

ascertainment bias into theoretical models of population genetics).
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Figure 1. 
SNP density using two different genotyping platforms. Numbers of fully called autosomal 

SNPs per 100kb window are plotted for the llumina1M-Duo array and whole genome 

sequencing by Complete Genomics. In each panel the genomes of five African hunter-

gatherers were analyzed (A: Pygmy, B: Hadza, and C: Sandawe).
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Figure 2. 
Small sample sizes modify allele frequency distributions. Allele frequency distributions 

shown are for source populations, not samples. Neutrality and constant population sizes are 

assumed. A: Probability that a site is polymorphic in a sample of n diploid individuals as a 

function of derived allele frequency. B: Theoretical allele frequency distributions given a 

SNP discovery panel of n diploid individuals.
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Figure 3. 
Joint allele frequency distributions of African hunter-gatherers. Analyzed SNPs analyzed are 

autosomal, called in all samples, and polymorphic in at least one population. Minor allele 

frequencies for pairs of populations are shown in each panel. Top panels show allele 

frequencies from whole genome sequencing (Complete Genomics). A: Pygmy and Hadza, 

B: Pygmy and Sandawe, C: Hadza and Sandawe. Bottom panels show allele frequencies 

from the Illumina1M-Duo genotyping array. D: Pygmy and Hadza, E: Pygmy and Sandawe, 

F: Hadza and Sandawe.
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Figure 4. 
Population genetic statistics from two different genotyping platforms. Fully called 

autosomal SNPs were analyzed, and hypermutable CpG sites were omitted. Whole genome 

sequencing data is in black and SNP data from the Illumina1M-Duo genotyping array is in 

blue. A: Derived allele frequencies. B: Mean age of SNPs, using Equation 4 from [23] and 

effective population sizes from [2]. C: Population differentiation, as measured by mean FST.
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Figure 5. 
Linkage disequilibrium (LD) decay curves. Fully called autosomal SNPs were analyzed and 

gamete frequencies were calculated as per the EM algorithm in [54]. Five individuals per 

population were analyzed. Whole genome sequencing data is in black and SNP data from 

the Illumina1M-Duo genotyping array is in blue. Solid lines indicate the logarithmic least 

squares fit for each genotyping platform. Each panel shows LD decay curves for a different 

hunter-gatherer population (A: Pygmy, B: Hadza, and C: Sandawe).
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